Research Spotlight: Understanding How Cells Sense and Respond to the Presence of Nutrients
Researchers work to understand how cells sense and respond to nutrients.
Department of Medicine
Contact Information
149 13th Street
Boston,
MA
02129
Phone: 617-724-8922
Fax: 617-726-5669
Our current investigations concern the structure and function of podocytes, focusing on regulation of the actin cytoskeleton, the GTPase dynamin, and clathrin-mediated endocytosis. A better understanding of podocyte pathobiology will pave the way for developing a cure for kidney diseases.
Podocytes are terminally differentiated cells that form the filtration barrier in the kidney, and podocyte damage or loss is an early symptom of many kidney diseases. Our recent studies suggest that the GTPase dynamin is a critical regulator of actin dynamics in healthy and diseased podocytes. In normal podocytes, dynamin influences actin organization in a GTP-dependent manner. During proteinuric kidney disease, induction of a cytoplasmic form of the protease cathepsin L leads to cleavage of dynamin at a conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria (elevated protein levels in urine due to defective ultrafiltration). Strikingly, podocyte damage and proteinuria do not occur when cathepsin L-resistant dynamin mutants are delivered to the kidney. Our study identifies dynamin as a critical regulator of renal permselectivity, which is specifically targeted by proteolysis under pathological conditions. We are currently elucidating the mechanisms that lead to the presence of the cathepsin L in the cytoplasm, as well as the mechanisms by which dynamin regulates structure and function of healthy and diseased podocytes. Better understanding of podocyte pathobiology will pave the way for developing a cure for kidney diseases in the future.
The function of podocyte in the ultrafiltration barrier requires a highly dynamic actin cytoskeleton. Our data suggest that dynamin is a master regulator of actin dynamics in podocytes. We are using molecular biology, biochemistry, and mouse models to elucidate the molecular mechanism by which dynamin regulates actin dynamics in podocytes.
Clathrin-mediated endocytosis is the process by which cells internalize receptors, transmembrane channels, transporters, and extracellular ligands such as hormones, growth factors and nutrients. In neurons, endocytosis is critical to allow rapid synaptic vesicle regeneration. In addition, endocytosis of ligand-activated receptors is essential for the proper attenuation of a variety of signal transduction processes, as well as for co-localization of activated receptors with downstream signaling molecules. Thus, defective regulation of this process can cause many aberrations of normal cellular function, including neoplastic transformation. In contrast to the classical view that dynamin acts as a mechanochemical enzyme or "pinchase" that serves vesicles from the plasma membrane, our work suggests an alternative model in which dynamin is a regulatory GTPase that orchestrates formation of clathrin-coated vesicles. In this view, dynamin recruits other proteins that execute vesicle budding. In support of our model, we have identified Hsc70 and it's co-chaperone auxilin as downstream effectors of dynamin activity (Newner et al., 2003 Sever et al., 2006). These observations suggest that dynamin instructs the chaperone machinery to induce conformational changes within the clathrin coat that drive vesicle constriction and fission. We are now examining the mechanism by which dynamin regulates the chaperone machinery. Ultimately, we would like to identify the minimal molecular machinery that executes the fission reaction.
Sever S, Muhlberg AB, Schmid SL. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. 1999. 398: 481-486.
Sever S, Damke H, Schmid SL. Dynamin: GTP controls formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol. 150: 1137-1147.
Sever S, Damke H, Schmid SL. Garrotes, springs, ratchets and whips: putting dynamin models to the test. 2000. 5: 385-392.
Damke H, Muhlberg AB, Sever S, Sholly S, Warnock DE, Schmid SL.Expression, purification and functional assays for self-association of dynamin-1. Meth Enz. 329: 447-457.
Sever S. Dynamin and endocytosis. Curr Opinion in Cell Biol. 14: 463-467.
Newmyer S, Christensen A, and Sever S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Developmental Cell. 4: 929-920.
Sever S, Newmyer S, Skoch J, Ko D, McKee M, Bouley R, Ausiello D, Hyman BT and Backskai BJ. Physical and functional connection between auxilin and dynamin during endocytosis. EMBO J. 2006; 25: 4163-74.
Sever S, Altintas MM, Nankoe SR, Möller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest. 2007; 117: 2095-104.
Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J. 2010; 29: 3593-606.
Yaddanapudi S, Altintas MM, Kistler AD, Fernandez I, Möller CC, Wei C, Peev V, Flesche JB, Forst AL, Li J, Patrakka J, Xiao Z, Grahammer F, Schiffer M, Lohmüller T, Reinheckel T, Gu C, Huber TB, Ju W, Bitzer M, Rastaldi MP, Ruiz P, Tryggvason K, Shaw AS, Faul C, Sever S, Reiser J. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest. 2011; 121: 3965-80.
Schiffer M, Teng B, Gu C, Shchedrina VA, Kasaikina M, Pham VA, Hanke N, Rong S, Gueler F, Schroder P, Tossidou I, Park JK, Staggs L, Haller H, Erschow S, Hilfiker-Kleiner D, Wei C, Chen C, Tardi N, Hakroush S, Selig MK, Vasilyev A, Merscher S, Reiser J, Sever S. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med. 2015; 21: 601-9.
Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, Sperling LS, Lerakis S, Quyyumi AA, Reiser J. Soluble Urokinase Receptor and Chronic Kidney Disease. N Engl J Med. 2015; 373: 1916-25.
Every day, our clinicians and scientists chart new terrain in biomedical research to treat and prevent human disease and advance patient care.
Your support of Nephrology helps us provide the best possible care today and expand what will be possible tomorrow.
We offer innovative, high-quality medical care, trains future medical leaders, and produces research that advances science and improves care.
Researchers work to understand how cells sense and respond to nutrients.
Researchers from Mass General have found that engaging in recommended weekly amounts of physical activity—either concentrated in one to two days or spread throughout the week—may reduce the risk of a broad range of conditions.
In this large-scale comparative effectiveness trial, researchers demonstrated the equivalence of delivering early palliative care via video versus in-person visits on quality of life in patients with advanced lung cancer.
Cytisine, a plant-based medication, has been used to treat tobacco dependence for decades in other countries.
Researchers developed a machine learning model that uses blood proteomic information to estimate a proteomic age clock in a large sample of participants from the UK Biobank.
A novel educational program for clinicians provided a foundation about climate change and the impact of fossil fuel-related pollution on individual health.
The Division of Nephrology at Massachusetts General Hospital is a leading provider of services for patients with kidney disease, including diagnosis and management of kidney diseases and medical management of renal transplantation.