Press Release5 Minute ReadDec | 23 | 2021
Researchers uncover new details behind inflammation that promotes heart disease
Key Takeaways
- White blood cells trigger inflammation that contributes to heart disease. New research indicates that high blood pressure, atherosclerosis, and the occurrence of a heart attack each can cause bone marrow changes that increase white blood cell production.
- Targeting these processes may help reduce inflammation to prevent or treat cardiovascular disease.
Matthias Nahrendorf, MD, PhDThis study will allow us to now examine how to reduce white blood cell production to normal values, thereby cooling off inflamed plaques anywhere in the body.
Center for Systems Biology, Massachusetts General Hospital
BOSTON – High cholesterol and inflammation are key drivers of heart disease, and an inflamed buildup of lipids can cut off the blood supply through a coronary artery to cause a heart attack. Because white blood cells, which usually defend against infection, trigger inflammation in these situations, a team led by scientists at Massachusetts General Hospital (MGH) recently studied aspects related to the cells’ production. The group’s insights, which are published in Nature Cardiovascular Research, could lead to new strategies to protect cardiovascular health.
“In patients with heart disease, white blood cells are more numerous,” says senior author Matthias Nahrendorf, MD, PhD, an investigator in MGH’s Center for Systems Biology and a professor of radiology at Harvard Medical School. “Many of these cells can be found in a plaque—the buildup of fats, cholesterol, and other substances in a blood vessel—where they arrive after being born in the bone marrow and migrating through the blood stream. But what leads to their increased bone marrow output is not clear.”
Through experiments conducted in human bone marrow and mice, Nahrendorf and his colleagues found that high blood pressure, atherosclerosis, and the occurrence of a heart attack each can cause changes in the number of blood vessels in the bone marrow. These hallmarks of cardiovascular disease also changed the bone marrow vessels’ structure and function and affected their release of factors that regulate white blood cell production and migration.
“As a consequence, more white blood cells were available in the body, and this increase, called leukocytosis, propels inflammation everywhere, including in the arteries and the heart,” explains Nahrendorf. “This study will allow us to now examine how to reduce white blood cell production to normal values, thereby cooling off inflamed plaques anywhere in the body.”
Co-authors include MGH’s David Rohde, MD, Katrien Vandoorne, PhD and others.
Funding for the study was provided by the National Heart, Lung, and Blood Institute grant P01HL142494.
“This study provides strong evidence that cardiovascular disease affects the bone marrow vasculature and consequently blood stem cell activity,” said Michelle Olive, Ph.D., program officer in the Division of Cardiovascular Sciences at the National Heart, Lung, and Blood Institute, part of the National Institutes of Health. “This work sheds new light on the important role played by the vascular bone marrow niche and how inflammation occurs. It could lead to new targets and treatments for heart disease, the leading cause of death.”
About the Massachusetts General Hospital
Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2021, Mass General was named #5 in the U.S. News & World Report list of "America’s Best Hospitals."