Press ReleaseFeb | 28 | 2023
A Mass General Team is the First to Trace a Rare Smooth Muscle Disorder to a Single Mutation in a Non-Coding Gene
Key Takeaways
- Using whole genome sequencing, researchers identified a single variant in a microRNA gene, MIR145-5p, as the source of multisystemic smooth muscle dysfunction syndrome, which had gone undiagnosed in a child for years
- The discovery originated from the Undiagnosed Diseases Network study at Mass General, part of an NIH-funded research program to focus the nation’s leading scientific talent and technologies on solving the most challenging medical mysteries
- The findings will enable pediatricians to offer treatment to the patient for the first time
BOSTON – A team of investigators from Massachusetts General Hospital (MGH), a founding member of Mass General Brigham (MGB) and Mass General for Children (MGfC) has identified—for the first time—the mutation in a single non-coding gene of a young patient responsible for the extremely rare disease known as multisystemic smooth muscle dysfunction syndrome (MSMDS), which causes profound cerebrovascular, gastrointestinal and urologic impairment.
For the child’s family, the discovery helped unravel the mystery of a condition that had afflicted their son since birth and will now enable physicians to initiate treatment to lessen the risk of future strokes.
The team’s findings were reported in The Journal of Clinical Investigation.
"Thousands of other families live with the burden of children with undiagnosed diseases whose lives could be significantly changed with the help of the latest research and technologies to shed light on what are often hereditary disorders," says senior author Patricia Musolino, MD, PhD, a critical care and vascular neurologist at MGH and a globally recognized authority in MSMDS.
"The child we evaluated had been to five other hospitals before Mass General, which is part of the Harvard Clinical Site of the Undiagnosed Diseases Network(UDN) study, funded by the National Institutes of Health. Without that specialized team of experts under one roof, it would have been impossible to arrive at the diagnosis we did for this child."
Past research has shown a mutation in the coding gene ACTA2 to be commonly associated with multisystemic smooth muscle dysfunction syndrome, which prevents smooth muscle throughout the body from contracting and working properly.
In the case of the young MGH patient, the disease was characterized by multiple strokes beginning at age three, along with severe bowel, bladder and feeding issues. Standard genetic testing did not detect a mutation in the ACTA2 gene as the source of the problem.
MGH’s Undiagnosed Diseases Network team was the first to put all the clinical pieces together.
Co-authors David Sweetser, MD, PhD, and Lauren Briere, MS, CGC, narrowed the search to a single nucleotide variant in the gene MIR145, a microRNA gene.
The team followed up with a detailed molecular analysis which confirmed that the variant affects the expression of several cytoskeletal proteins and smooth muscle cell function. The genetic breakthrough represents only the sixth recorded monogenetic disorder (resulting from the dysfunction of a single gene) attributed to the microRNA (miRNA) class of genes.
”Despite major advances in genetic testing that now allow us to routinely sequence the entire genome, large numbers of patients with suspected genetic disorders still remain undiagnosed,” notes Sweetser. “One reason for this might be that practically all genetic testing performed today focuses on protein coding genes. The UDN has allowed us to delve much deeper, beyond standard clinical testing.
“The finding of disease-causing mutations in regulatory non-protein encoding genes, such as this microRNA, opens up a new frontier in our search for answers that can impact patient care.”
“As it turns out, the patient’s MIR145 variant actually causes the same cellular changes that result from the well-described MSMDS-causing ACTA2 variants," says Briere.
"That finding meant we were able to identify for the first time a second gene that interacts with ACTA2 to influence smooth muscle behavior," adds co-author Mark Lindsay, MD, PhD, an MGfC cardiologist.
"More important, though, is the impact it may have on the MGH patient, whose condition had baffled clinicians for so long," adds Lindsay.
"The hopeful message from this case is that advanced genetic research can change the course of a disease not just for one family, but potentially for others faced with the same debilitating condition,” says Musolino. “But that will only happen if the Undiagnosed Diseases Network, which Mass General is fortunate enough to be part of, is able to significantly expand its research through NIH funding."
Musolino is co-director of Pediatric Stroke and Cerebrovascular Service, MGfC, and assistant professor of Neurology at Harvard Medical School (HMS). Lindsay is assistant professor of Medicine, HMS.
Lead author Christian Lacks Lino Cardenas, PhD, is an instructor in Medicine at the Cardiovascular Research Center, Mass General Research Institute. Co-lead author Briere is a genetic counselor at MGH, working on the UDN study.
Sweetser is a medical geneticist, lead principal investigator of the UDN at MGH, and chief of Medical Genetics and Metabolism at MGH and MGfC
The study was funded by the National Institutes of Health through the Undiagnosed Diseases Network and the Caitlin and Rich Hill Family Fund for Undiagnosed Diseases at MGH.
About the Massachusetts General Hospital
Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2021, Mass General was named #5 in the U.S. News & World Report list of "America’s Best Hospitals." MGH is a founding member of the Mass General Brigham healthcare system.
-
- Department of Pediatrics
-
- Co-Director Pediatric Stroke and Cerebrovascular Service
- Assistant Professor of Neurology Harvard Medical School
- Co-Director of the Neurobiology of Disease Harvard Advance Course
-
- Chief of Medical Genetics and Metabolism, MGH
- Attending Physician in Pediatric Hematology/Oncology
- Co-Director Pitt Hopkins Clinic
Type
Centers and Departments
Topics
Check out the Mass General Research Institute blog
Bench Press highlights the groundbreaking research and boundary-pushing scientists working to improve human health and fight disease.
Support Research at Mass General
Your gift helps fund groundbreaking research aimed at understanding, treating and preventing human disease.